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We examine the effects of viscous damping in the boundary layers on the Bragg resonance of surface water
waves by a two-dimensional array of vertical cylinders. For cylinders of small radius relative to the wave-
length, we first derive an effective boundary condition for the radial derivative of the velocity potential to
account for the viscous forces. Coupled-mode equations are then rederived by an asymptotic method for the
envelopes of multiply resonated waves inside the array. Effects of viscosity on band gaps and scattering
coefficients due to a plane incident wave are examined analytically for an infinitely long array of finite width
surrounded by open water. For normal incidence the envelope physics is one dimensional. The transmission
and reflection properties are studied first. Oblique incidence can in principle excite several wave trains in
different directions. Explicit solutions are given and discussed when there are only two wave trains inside the
array. Results are compared with recent theories where viscosity is not taken into account. The asymptotic
theory can be modified for two-dimensional sound scattering by a cylinder array.
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I. INTRODUCTION

In �1,2�, a theory was given for the resonant scattering of
water waves by a periodic two-dimensional array of vertical
cylinders standing across the depth of an open sea. The
theory was motivatied by possible construction of offshsore
airports consisting of a platform supported above water by
vertical piles. Under the assumptions of small cylinders and
large spacing comparable to a typical wavelength, a linear-
ized theory for infinitestimal waves was studied. In particu-
lar, the cylinder spacing was assumed to be comparable to
the wave length, but the cylinder radius to be small: �=ka
�1. Although scattering by one cylinder is weak, O��2�, the
accumulated effects of many cylinders over a large region of
length scale O�1 /k�2� become significant when Bragg con-
dition is nearly met. For a given lattice, the directions of the
Bragg-resonated waves were first found by Ewald’s con-
struction. The evolution equations of the wave amplitudes
were derived by the asymptotic method of multiple scales
and were then solved for waves scattered by a infinite array
of cylinders in a strip of finite width. Both normal and ob-
lique incidence were studied. Analytical and numerical re-
sults were obtained for two and three resonant waves. Effects
of band gaps on scattering characteristics were analyzed in
detail.

In this article we wish to assess the effects of viscous
effects in the boundary layers around the cylinders, which
are unavoidable in laboratory experiments and in the field. In
particular, we shall show that viscosity blurs the boundary of
band gaps and hence the distinction between propagation and
evanescence. In AppendixA, we give estimates to show that
nonlinear effects of vortex shedding, vital for wave forces on
piles in sufficiently strong waves, are not important for the
weak waves considered herein. Vortex damping in large
waves is likely much more important than resonant scatter-

ing and hence is a separate topic which requires a much more
empirical treatment.

II. POTENTIAL FORMULATION MODIFIED FOR
BOUNDARY-LAYER EFFECTS

We consider the diffraction of plane monochromatic inci-
dent waves from the open sea by a two-dimensional array of
bottom-mounted vertical cylinders. The sea depth H is as-
sumed to be constant and the radius a of the cylinders much
smaller than the incident wavelength 2� /k so that �=ka
�1 is a small parameter. Assuming irrotationality in most of
the fluid, the velocity potential outside the viscous boundary
layers next to the cylinders must satisfy

�2� +
�2�

�z2 = 0, − H � z � 0, �2.1�

where � is the gradient operator in the horizontal plane
�x ,y�. On the sea surface, the atmospheric pressure is as-
sumed to be constant. Restricting to infinitesimal waves, the
kinematic and dynamic free surface conditions can be com-
bined to give

�2�

�t2 + g
��

�z
= 0, z = 0. �2.2�

On the sea bed of constant depth, we have

��

�z
= 0, z = − H . �2.3�

Let R�m1 ,m2�=m1a1+m2a2 denote the lattice coordinate of
the center of cylinder, where �a1 ,a2� are the primitive lattice
vectors in the horizontal �x ,y� plane and �m1 ,m2� are inte-
gers. Let �r� ,z� be the local cylindrical polar coordinate cen-
tered at the lattice node R�m1 ,m2�. The position of any point
in space is �r ,z� with r=R�m1 ,m2�+r�.

If dissipation near the cylinders is totally ignored, the
boundary condition on the cylinder surface is simply
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��

�r�
= 0, ∀ r� = a . �2.4�

It is well known for sinusoidal waves that the linearized
problem can be reduced from three to two dimensions by the
substitution

��x,y,z,t� = ��x,y,z�e−i	t = 
�x,y�Z�z�e−i	t, �2.5�

where 
 is proportional to the free-surface displacement ac-
cording to

� =
i	


g
�2.6�

and

Z�z� � −
ig

	

cosh k�z + H�
cosh kH

, �2.7�

with k= �k� satisfying the dispersion relation �3�

	2 = gk tanh kH . �2.8�

For brevity, we omit the symbol “Re” �real part of� for all
complex expressions. The surface displacement amplitude 
,
which represents the horizontal pattern of ��x ,y ,z�, then sat-
isfies the Helmholtz equation in the horizontal plane

�2
 + k2
 = 0. �2.9�

Hence for the present geometry the water-wave scattering
problem is mathematically equivalent to that in two-
dimensional acoustics.

The condition �2.4� is inadequate to account for viscosity,
which is important in a thin boundary layer on the cylinder
walls. We now find a fictitious condition within the frame of
inviscid potential theory that predicts the correct force on the
cylinder.

First, for a sufficiently small cylinder in relatively long
waves such that �=ka�1, it is well known �4� that the
scattering amplitude by any one cylinder is of O�k2a2�,
meaning that the disturbance to waves is weak. Outside the
boundary layer, but still near a cylinder the ratio of two terms
in �2.9� is k2
 /�2
=O�k2a2�; hence, 
 is approximately a
potential—i.e.,

�2
 = 0 + O�k2a2�, r� � a . �2.10�

Without the cylinder the local velocity at the center of the
cylinder and at depth z is approximately uniform horizon-
tally. The corresponding 
 can be represented by


 = Ur� cos� − 0� , �2.11�

where 0 is the direction and U�x ,y� the complex amplitude

of U� , which must be solved from the analysis of waves. With
the cylinder the total solution outside the boundary layer is


 = U�r� +
a2

r�
�cos� − 0� . �2.12�

Inside the oscillatory boundary layer, the tangential and
transverse velocity components �u ,v�Z�z� are, according to
Stokes theory,

u�r�,,� = − 2U sin� − 0��1 − e−�1−i��/�� , �2.13a�

v�r�,� =
2U

a
cos� − 0�	� −

�

1 − i
�1 − e−�1−i��/��
 ,

�2.13b�

where ��r�−a and �=�2� /	 is, the Stokes boundary layer
thickness. By integrating the viscous stresses obtained from
�2.13a� and �2.13b�, and pressure from Bernoulli’s law �p
=i	��� and �2.12�, the total horizontal force per unit height
of the cylinder at depth z can be found:

F�z� = − 2�i	�a2U	1 + �1 + i�
�

a

Z�z� , �2.14�

which is in the direction of U� . The first term in the square
brackets is due to inviscid pressure and the second to viscos-
ity.

For the convenience of later analysis, let us represent the
boundary layer effects by the effective �fictitious� boundary
condition �5�

��

�r�
+ �̄� = 0, r� = a , �2.15�

which yields the same force �2.14� on the cylinder. The ap-
proximate potential satisfying �2.10� near and �2.15� on the
cylinder, and approaching �2.11� at r��a, is readily found to
be

� � U�r� +
a2

r�

1 + �̄a

1 − �̄a
�cos� − 0�Z�z� . �2.16�

It will be shown shortly that �̄a�1, so that

� � U�r� +
a2

r�
�1 + 2�̄a��cos� − 0�Z�z� . �2.17�

With this result the dynamic pressure on the cylinder wall is

�p�r�=a = �i	���r�=a � 2ia	�U�1 + �̄a�cos� − 0� ,

�2.18�

which gives the following amplitude of the horizontal force
on the cylinder:

F = 
0

2�

dap cos  � − 2�i	�a2U�1 + �̄a� . �2.19�

By equating �2.14� and �2.19�, the dimensionless coefficient

�̄a is found:

�̄a = ��̄r + i�̄i�a = �1 + i�
�

2a
= �1 + i�

1

a
� �

2	
,

�2.20�

which is a complex constant. Let us estimate the rough mag-

nitudes of �̄a for water waves �6�. In the field, the following
values are representative: a�1–5 m and ka�0.1. Let the
boundary layer be turbulent and the eddy viscosity be 100
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times that of the molecular viscosity—i.e., �=10−4 m2 /s;

then, �̄a� �̄ra� �̄ia�0.01–0.002 and is small. For labora-
tory experiments, a�2.5 cm, 	�5 rad /s, and the kinematic

viscosity at 20 °C �=1�10−2 cm2 /s, we get �̄a�0.0125,
which is also small. In view of these estimates, we shall

write in subsequent analysis �̄=�2�, with �=ka�1 and
�=O�1�. From here on, we shall solve �2.1� subject to the
boundary conditions �2.2� and �2.3� and

��

�r�
+ �2�� = 0, r� = a, �a = ��r + i�i�a = �1 + i�

�

2�2a
.

�2.21�

Returning to the wave problem, it is known that scattering
by each small cylinder is weak �O��2��. However, when the
number of cylinders in any direction is large �O�1 /�2��, the
accumulated effects may become of O�1� if the Bragg reso-
nance condition is met. In that case there are two contrasting
length scales: 1 /k and 1 /�2k. If small frequency detuning
exists, there are also two contrasting time scales: O�1 /	� and
1 /�2	. It is therefore natural to employ the asymptotic
method of multiple scales. Perturbation equations are derived
for the short-scale variations in each unit cell. Solvabilty of a
higher-order cell problem will lead to the equations govern-
ing large-scale dynamics. Since the full analysis is quite
similar to the inviscid theory of �2�, many details are omitted
here and only new parts will be decribed.

III. MULTIPLE-SCALE ANALYSIS AND THE
FIRST-ORDER CELL PROBLEM

We shall consider a periodic array over an area much
greater than the typical wavelength. Except in the immediate
neighborhood of the cylinders, the wave �outer� problem is
one of two contrasting scales. As in �2�, we introduce fast
and slow variables

x,y,z,t; �X,Y,T� = �2�x,y,t� , �3.1�

so that x, y, z, and t describe the fast motion characterized by
the length and time scales of 1 /k and 1 /	, while X, Y, and T
describe the slow variation of the envelope over the whole
array. On the short scale of a unit �periodic� cell or a wave-
length, the total array is practically infinite in extent. We
shall apply Bloch theorem �7,8� so that for any lattice vector
R=R�m1 ,m2�,


�r� = eik·R
�r + R� or ��r,z� = eik·R��r + R,z�
�3.2�

with 
 and � being horizontally periodic.
Let us expand the outer potential as follows:

� = ��1 + �2�2 + O��4��e−i	t, �3.3�

where �1 and �2 are functions of �x ,y ,z ;X ,Y ,T�. Substitut-
ing �3.3� into the governing equations �2.1�–�2.3�, we obtain
the governing equations for the perturbation potentials �1
and �2.

In particular, �1 only satisfies the homogeneous condi-
tions on the fast scale in a unit cell V as sketched in Fig. 1:

�2�1 +
�2�1

�z2 = 0, in V , �3.4�

��1

�z
−

	2

g
�1 = 0, z = 0, �3.5�

��1

�z
= 0, z = − H . �3.6�

Note that these differential equations describe variations over
the fast �short� scale and are the same from one periodic cell
to another. The total domain �kX ,kY�=O�1� being very large
relative to the fast coordinates, we impose Bloch condition
�3.2� on �1.

Because the cylinders are so small, condition �2.21� is not
effective at this order.

We assume that N progressive plane waves satisfy �or
nearly satisfy� the Bragg condition of resonance. Let k1 de-
note the incident wave vector and k j =k�cos � j , sin � j�, j
=2,3 , . . . ,N, the resonantly scattered wave vectors, where � j
denotes the direction of k j with respect to the x axis. Let K1,j
be the reciprocal lattice vector pointing from the tip of k1 to
the tip of k j. The Bragg condition �7,8� reads

k j = k1 + K1,j, j = 1,2,3, . . . ,N . �3.7�

For a given lattice and incident wave vector, k1 and k j, j
�1, can be found by Ewald’s geometrical construction �7,8�.

Formally the solution for �1 is the sum of all N mutually
resonating progressive waves of amplitudes Aj�X ,Y ,T�:

�1 = �
j=1

N

Aj�
�j��x,y,z� � �

j=1

N

AjZ�z�eikj·r, ��j� = Z�z�eikj·r.

�3.8�

The slow variations of Aj�X ,Y ,T� remain to be found at the
next order.

IV. SECOND-ORDER PROBLEM

At second order, �2 is governed by

a
2

a
1

S
F

z = 0

z = −H

VS
B

S
V

FIG. 1. A periodic cell around a vertical cylinder. a1 and a2 are
the primitive lattice vectors.
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�2�2 +
�2�2

�z2 = − 2�̄ · ��1, in V , �4.9�

where �̄���X ,�Y�,

��2

�z
−

	2

g
�2 =

2i	

g

��1

�T
, z = 0, �4.10�

��2

�z
= 0, z = − H . �4.11�

Bloch condition �3.2� also applies to �2. On the cylinder
surface, condition �2.21� now requires

��2

�r�
= −

1

�2

��1

�r�
− ��1, r� = �r�� = a . �4.12�

These inhomogeneous equations govern �2 over the short
coordinates in a periodic cell.

Equation �4.12� requires that the O�1� gradient ��1 /�r�
on the small cylinder must be canceled by the large gradient
of a small �O��2�� potential. Thus �2 must change quickly in
the neighborhood of r�=O�a�, which is much smaller than
the cell size �O�1 /k�. This requirement is outside the realm
of �4.9�–�4.11� and �3.2� We now let �2 to be the sum of the
outer and inner solutions: �2

out and �2
in. The outer solution is

dominant in the far field, �2��2
out, kr=O�1�, and satisfies

�4.9�–�4.11� and �3.2�. On the other hand, the inner solution
is of local importance and dominant in the near field only:
�2��2

in, r�=O�a�. It must vanish at O�1 /k��r��a, while
its radial gradient must be so large as to satisfy �4.12�. In this
small neighborhood, �2

in needs only satisfy the horizontal
Laplace equation instead of �4.9�, with an error of �2. By
using the approximation of ��1 /�r� on the cylinder de-
scribed in detail in �2�, �4.12� becomes, approximately,

��2
in

�r�
= − Z�z��

j=1

N

kAje
ikj·Rm1,m2� i cos�� − � j�

�2

−
1 + cos 2�� − � j�

2�
+

�a

�
+ O��0��, r� = a ,

�4.13�

where the last term involving � is new. It is now easy to find
the approximate solution

�2
in = Z�z��

j=1

N

Aje
ikj·R�m1,m2�� ln kr�

2
�1 − 2�a�

+
i

�

a

r�
cos�� − � j� −

1

4

a2

r�2 cos 2�� − � j�� + O��� .

�4.14�

From this, the value of �2
in on the cylinder r�=a can be

obtained. Together with the outer solution, the sum

�2 = �2
out + �2

in �4.15�

is uniformly valid everywhere in the unit cell surrounding
the cylinder.

We now derive the envelope equations for Aj by examin-
ing the solvability of �2, without solving for �out explicitly,

A. Solvability of �2 and envelope equations

Refering to �3.8�, we apply Green’s identity to ��j�* and
�2 over the unit cell shown in Fig. 1:

  
V
��2��2 +

�2

�z2���j�* − ��j�*��2 +
�2

�z2��2�dV

= 
�V
��2

���j�*

�n
− ��j�*��2

�n
�dS �4.16�

where ��j�*=Z*�z�e−ikj·r denotes the complex conjugate of
the leading-order potential ��j�. The bounding surface of V,
denoted by �V, consists of the free surface SF, the cylinder
surface SB, the vertical surfaces SV, and the sea bottom at z
=−H. Since the governing equations for �2 �dominated by
�2

out� are known away from the cylinders in terms of Aj, the
above identity amounts to the solvability condition for the
inhomogeneous boundary value problem and should give the
evolution equations for the wave envelopes. Using the gov-
erning equations and the explicit solution of �2

in near the
cylinders, all the integrals can be evaluated, leading to the
evolution equations for Aj. Most of these integrals have al-
ready derived in �2�. The surface integral over the cylinder
wall is slightly different. By following the steps of �2,9� we
get

IB = �
h=1

N

�Ah��1 − 2�a� − 2 cos�� j − �h��
−H

0

�Z�z��2dz

+ O��� . �4.17�

With this modification the new envelope equations are found.
Letting

Cg
�j� = Cg

k j

k
, j = 1, . . . ,N , �4.18�

denote the group velocity of wave j and

�0 =
�Cg

kA
�4.19�

the coupling coefficient, where A denotes the cross-sectional
area of the cell, we obtain

�Aj

�T
+ Cg

�j� · �̄Aj = −
1

2
i�0�

h=1

N

��1 − 2�a� − 2 cos�� j − �h��Ah,

j = 1, . . . ,N . �4.20�

Returning to natural coordinates, the envelope equations read

which couple Nj mutually resonating waves in the array. The
coupling coefficient �ka�2�0=kCg��a2 /A� on the right-hand
side of �4.21� is proportional to volume density of the cylin-
ders in water. The effect of boundary layers is represented by
the complex factor �a. In open waters outside the area of
cylinders, a=0, �4.20� are uncoupled and reduce to
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�Aj

�T
+ Cg

�j� · �̄Aj = 0, j = 1, . . . ,N . �4.22�

With viscous effects, the law of energy conservation be-
comes

�

�T
�
j=1

N

�Aj�2 + �
j=1

N

�Cg
�j� · �̄�Aj�2� = − �ia�0�

j=1

N

�
h=1

N

�AhAj�*.

�4.23�

As expected, the total energy is damped in the cylinder array
by viscous dissipation whose rate increases with �ia and N.

In principle the system �4.20� can be used to study reso-
nant diffraction by a large array in an area of any plan form,
for which numerical techniques are needed in general. We
now reexamine several examples of simple geometry studied
in �1,2� in order to see the influence of viscous damping on
one- and two-dimensional scattering. Specifically, we con-
sider a long and straight strip of many rows of cylinders �0
�X�L, −��Y ���, which may model the supporting
structure of an offshore airport. The lattice is rectangular.

V. ONE-DIMENSIONAL SCATTERING

A. No Bragg resonance in an infinite array

Let the array be of infinite extent in all horizontal direc-
tions, and if no scattered wave is resonated in the cylinder
array by the incident wave, then N=1. The envelope of the
incident wave satisfies

�A1

�T
+ Cg

�1� · �̄A1 =
1

2
i�0�1 + 2�a�A1, �5.1�

which has the solution

A1�X,Y,T� = A1
0�X cos �1 + Y sin �1 − CgT�e�i�0/2��1+2�a�T.

�5.2�

Using �5.2�, the corresponding free-surface elevation is

� =
i	


g
=

1

2
A1ei�k1·r−	t�

=
1

2
A1

0�X cos �1 + Y sin �1 − CgT�

�eik1·re−i�	−��2�0/2��1+2�ra��te−�2�0��ia�t. �5.3�

Thus viscosity introduces a slow damping of the incident
wave as well as a small frequency shift of �2�0 /2�1
+2�ra�. Both damping and phase shift increase with viscos-
ity. The decaying envelope still advances at the group veloc-
ity.

B. Normal incidence and Bragg scattering

Let a train of plane incident waves arrive from X�−�
along the X axis, so that the incident wave vector k1 is par-
allel to the rows of a rectangular array. The incidence is
normal and the reflected wave is in the negative X direction

so that wave propagation is one dimensional: k1=ki, k2
=−ki. Bragg condition �3.7� is satisfied if

k1 − k2 = 2ki = Kn,0 =
2�n

a1
i �5.4�

where n is any positive integer and a1 the spacing in the x
direction. This problem of one-directional propagation is
equivalent to Bragg scattering by a linear array along the
centerline of a long channel of width a2.

Letting k=n� /a1, �1=0, and �2=� in �4.20�, the follow-
ing pair of equations for the envelopes of the incident �A1�
and reflected �A2� waves are found:

�A1

�T
+ Cg

�A1

�X
= −

1

2
i�0�− A1 + 3A2� + i�0�a�A1 + A2� ,

�5.5a�

�A2

�T
− Cg

�A2

�X
= −

1

2
i�0�3A1 − A2� + i�0�a�A1 + A2� ,

�5.5b�

where

�0 =
�Cg

kA
=

�Cg

n�

a1
a1a2

=
Cg

na2
. �5.6�

The energy equation �4.23� takes the following form:

�

�T
��A1�2 + �A2�2� + Cg

�

�X
��A1�2 − �A2�2� = − 2�ia�0�A1 + A2�2.

1. Envelope dispersion in an infinite domain

Equations �5.5a� and �5.5b� can be combined by eliminat-
ing either A1 or A2 to yield the complex Klein-Gordon equa-
tion

	 �2

�T2 − i�0�1 + 2�a�
�

�T
− Cg

2 �2

�X2 + 2�0
2�1 − 2�a�
�A1

A2
�

= 0. �5.7�

Consider the following solution in an infinite domain:

A1 = A0eiKX−i�T, �5.8�

where �2K and �2� correspond to detunings of wave num-
ber and frequency. Equation �5.7� gives the dispersion rela-
tion

K2 = ��0

Cg
�2� �

�0
+ 2�� �

�0
+ 2�a − 1� . �5.9�

For a range of real �, the real and imaginary parts of the
complex K are plotted in Fig. 2 for different values of the
complex parameter �a. Without dissipation, �a=0.0, it is
known �1� that K is purely imaginary within the band gap
−2�� /�0�1, where propagation is forbidden; outside the
band gap, K is purely real, so the envelopes propagate with-
out attenuation as dispersive waves. See Fig. 2�a�. In con-
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trast, with finite dissipation, K is now complex for all
� /�0�−2. The band gap disappears. All waves propagate
with dispersion and spatial attenuation. Larger �a leads to
stronger attenuation. At � /�0=−2, K=0, the envelope is
uniform in X and is infinitely long.

2. One-dimensional scattering by an array of finite width

Consider a very long array of finite width in 0�X�L,
where kL=O�1 /�2�. The incident wave arrives from open
water x=−� normally ��1=0� with a slight detuning from
Bragg resonance and is given in the form by �5.8� where the
detuning frequency and wave number are related by �2�
=�2CgK.

We expect both rightward and leftward �reflected� waves
in open waters on the incidence side X�0 and inside the
array 0�X�L, but only rightward waves on the transmis-
sion side X�L. In open waters the envelopes satisfy the
uncoupled equations �4.22�. Inside the array we let

A1 = A0T�X�e−i�T, A2 = A0R�X�e−i�T, �5.10�

where T�X� and R�X� are, respectively, the local transmission
and reflection coefficients in the cylinder region. It follows
readily from �5.7� that T and R are governed by an ordinary
differential equation of second order with constant coeffi-
cients:

� d2

dX2 + m2��T,R� = 0, �5.11�

where

m2 =
�0

2

Cg
2 � �

�0
+ 2�� �

�0
+ 2�a − 1� . �5.12�

Thus the wave numbers are different from that in open wa-
ters. At the entrance and exit, we require the boundary con-
ditions

T�0� = 1, R�L� = 0. �5.13�

The solution can be readily found:

T�X� = T1eimX + T2e−imX, �5.14a�

R�X� = R1eimX + R2e−imX, �5.14b�

where

T1 =
B + C

�B + C� − �B − C�e2imL , �5.15a�

T2 = −
�B − C�e2imL

�B + C� − �B − C�e2imL , �5.15b�

R1 = �3

2
− �a� 1

�B + C� − �B − C�e2imL , �5.16a�

R2 = − �3

2
− �a� e2imL

�B + C� − �B − C�e2imL , �5.16b�

with

B =
�

�0
+

1

2
+ �a , �5.17�

C =
mCg

�0
= ��r + i�i =���r

2 + �i
2 + �r

2

+ i sgn��i����r
2 + �i

2 − �r

2
, �5.18�

in which

�r = � �

�0
+ 2�� �

�0
+ 2�ra − 1�, �i = � �

�0
+ 2��2�ia� .

�5.19�

In particular, the transmission coefficient at the exit is

T�L� = e−imL +
�B + C��eimL − e−imL�

�B + C� − �B − C�e2imL �5.20�

and the reflection coefficient at the entrance is

R�0� = �3

2
− �a� 1 − e2imL

�B + C� − �B − C�e2imL . �5.21�

The controlling parameters are �a �viscosity�, � /�0 �detun-
ing�, and �0L /Cg �array width�. For different viscosity pa-
rameters �a, we display in Fig. 3 the spatial variation of the
reflected energy intensity �R�X��2 as a function of dimension-
less width of the cylinder array �0L /Cg. Two detuning fre-
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FIG. 2. Dispersion relation of water waves through infinite
periodic cylinders for different values of the parameter �a:
�a� �a=0.0 �no dissipation�, �b� �a=0.1�1+i�, �c� �a=0.5�1+i�,
and �d� �a=2.0�1+i�. Solid curve: Re�KCg /�0�. Dashed curve:
Im�KCg /�0�.

ALI TABAEI AND CHIANG C. MEI PHYSICAL REVIEW E 79, 026314 �2009�

026314-6



quencies are chosen for illustration: one inside the inviscid
band gap 2�� /�0�1 with � /�0=0.5 and one outside
with � /�0=2. For comparison we first show the results for
no dissipation �a=0.0. Inside the band gap, �R�X��2 decays
monotonically with increasing distance X from the entrance
and also with increasing array width L. The reflection inten-
sity at the entrance R�0� approaches unity. Outside the band
gap, �R�X��2 is oscillatory in X and vanishes along certain
lines parallel to the array axis. For finite dissipation, �a
�0.0, however, �R�X��2 decays for all detuning frequencies.
The attenuation is monotonic if the detuning ratio is 0.5 and
is oscillatory with attenuation if the detuning is 2.0; for large
enough �a, oscillations are totally damped out. Note that
there is no symmetry with respect to � /�0=−0.5 when �a
�0.

In Fig. 4, the reflection coefficient at the entrance is plot-
ted as a function of the dimensionless array width �0L /Cg
for different degrees of dissipation �a and for detuning
� /�0=−4,−0.5,0.5,1 ,2. When �a=0.0 and within the in-
viscid band gap, −2�� /�0�1, reflection increases mono-
tonically and approaches unity as the array width increases.
Outside the band gap, �R�0��2 is oscillatory and vanishes for
certain discrete array widths. With dissipation, the bad gap
disappears and �R�0��2 diminishes more rapidly in magnitude
and loses oscillatory character for large �0L /Cg. The distinc-
tion between propagation and evanescence disappears. In
particular, windows of zero reflection for certain values of
�0L /Cg become windows of weak but finite reflection.

For a few array widths �0L /Cg=0.5,1.0,4.0,8.0, the de-
pendence of reflection upon the detuning frequency is illus-

trated in Fig. 5. Without dissipation, reflection is very strong
inside the band gap. Outside the band gap, �R�0��2 is oscilla-
tory and vanishes at certain values of � /�0. There is sym-
metry with respect to the center of the band gap, � /�0
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FIG. 3. Reflection intensity �R�X��2 along the lattice for various �0L /Cg with detuning parameter � /�0=0.5 �left figures� and 2.0 �right
figures� for different values of the parameter �a: �a� �a=0.0 �no dissipation�, �b� �a=0.1�1+i�, �c� �a=0.5�1+i�, and �d� �a=2.0�1+i�.
Thick solid curve: �0L /Cg=1. Thin solid curve: �0L /Cg=4. Dashed curve: �0L /Cg=8.
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FIG. 4. Dependence of the reflection intensity at inlet X=0,
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values of the parameter �a: �a� �a=0.0 �no dissipation�, �b� �a
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=−0.5 �see Fig. 5�a��, similar to the dispersion relation
shown in Fig. 2�a�. When �a�0.0, symmetry is lost. The
highest reflection occurs at � /�0=−2. Also �R�0��2 does not
vanish for any values of � /�0 and oscillates with increasing
�a. In all cases, reflection in general decreases with increas-
ing �� /�0�.

VI. TWO-DIMENSIONAL SCATTERING: OBLIQUE
INCIDENCE BY A LONG ARRAY

In this section we shall reexamine the simpler cases stud-
ied by �2� where only one new wave is resonantly scattered
in the array—i.e., N=2. The case of two or more new waves
�N=3,4 , . . . � is algebraically more complex and is not
treated here.

Without loss of generality we let the direction of the in-
cident wave be 0��1�� /2, so that k1 points to the north-

east. Limiting to a square lattice, one finds by Ewald’s con-
struction that four possibilities exist for the scattered waves,
as shown in Figs. 6�a�–�d� in �2�. They are the following: �i�
Forward scattering: �a� 0��2�� /2 and �b� −� /2��2�0.
There is in general no reflection on the left of the array, but
two transmitted waves on the right. �ii� Backward scattering:
�c� � /2��2�� and �d� ���2�3� /2. There is in general
reflection �hence two waves� on the left and only transmis-
sion hence one wave� on the right of the array.

A. Solutions for wave envelopes

Inside the array, 0�X�L, the envelopes are denoted by
Aj, j=1,2, which are governed by �4.20�. We denote the
envelopes in the open waters left of the array by Aj

− and right
of the array by Aj

+, j=1,2, which are governed by �4.22�
instead. Let the incident wave envelope be

A1 = exp�iK�X cos �1 + Y sin �1� − i�T� ,

� = CgK, X � 0. �6.1�

We assume solutions of the form

�Aj
−,Aj,Aj

+� = A0�Bj
−�X�,Bj�X�,Bj

+�X��ei�K sin �1Y−�T�, j = 1,2.

�6.2�

Then, inside the array, 0�X�L, we have

dB1

dX
=

i�0

Cg
�	1 + 2�a

2 cos �1
+

�

�0
cos �1
B1

+
2 cos��1 − �2� − 1 + 2�a

2 cos �1
B2� , �6.3a�

dB2

dX
=

i�0

Cg
�2 cos��1 − �2� − 1 + 2�a

2 cos �2
B1

+ 	1 + 2�a

2 cos �2
+ � �

�0
�1 − sin �1 sin �2

cos �2

B2� .

�6.3b�

In the open water on the left �X�0�, the envelopes are un-
coupled:

dB1
−

dX
= iK cos �1B1

−, �6.4a�

dB2
−

dX
=

iK�1 − sin �1 sin �2�
cos �2

B2
−. �6.4b�

On the transmission side �X�L�, we have instead

dB1
+

dX
= iK cos �1B1

+, �6.5a�

dB2
+

dX
=

iK�1 − sin �1 sin �2�
cos �2

B2
+. �6.5b�

Use is made of the relation �=CgK. Inside the array of
cylinders, the envelopes are coupled:
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FIG. 5. Dependence of the reflection intensity at X=0, �R�0��2,
on detuning parameter � /�0 for various array widths �0L /Cg

=0.5 �thick solid curve�, 1.0 �thin solid curve�, 4.0 �dashed curve�,
8.0 �dashdot curve� for different values of the parameter �a: �a�
�a=0.0 �no dissipation�, �b� �a=0.1�1+i�, �c� �a=0.5�1+i�, and
�d� �a=2.0�1+i�.
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FIG. 6. Forward scattering by a square lattice of spacing a1. The
incident and scattered wave vectors k1 and k2 are inclined at �1

=� /3 and �2=−� /3.
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d

dX
	B1

B2

 =

i�0

Cg
M	B1

B2

 = 0, �6.6�

where M is the matrix with elements

M11 =
1 + 2�a

2 cos �1
+ � �

�0
�cos �1, �6.7a�

M12 =
2 cos��1 − �2� − 1 + 2�a

2 cos �1
, �6.7b�

M21 =
2 cos��1 − �2� − 1 + 2�a

2 cos �2
, �6.7c�

M22 =
1 + 2�a

2 cos �2
+ � �

�0
�1 − sin �1 sin �2

cos �2
. �6.7d�

The solution is a linear combination of exponential terms

	B1

B2

 = 	b11 b12

b21 b22

	E1

E2

 , �6.8�

where

E1 = exp� i�1�0X

Cg
�, E2 = exp� i�2�0X

Cg
� . �6.9�

The eigenvalues �1 and �2 are the roots of a quadratic equa-
tion

�1,2 =
�M11 + M22� � �1/2

2
, �6.10�

where � is the discriminant:

� = �M11 + M22�2 − 4�M11M22 − M12M21�

= �M11 − M22�2 + 4M12M21

= 	1 + 2�a

2
� 1

cos �1
−

1

cos �2
� + � �

�0
� cos��1 − �2� − 1

cos �2

2

+
�2 cos��1 − �2� − 1 + 2�a�2

cos �1 cos �2
. �6.11�

Since �a is complex, both eigenvalues are always complex,
implying spatial attenuation or amplification along X in ad-
dition to the oscillatory behavior. For a given lattice, we first
find the direction �2 of the scattered wave for a given inci-
dent wave k1 by Ewald’s construction. The discriminant �
and the eigenvalues then depend on the inclinations ��1 ,�2�
and the detuning frequency � /�0 as given by �6.10� and
�6.11�, which are affected by viscosity. The coefficients bij
are to be determined by the matching boundary conditions at
X=0,L, which differ among four cases described before. We
now discuss two cases.

B. Forward scattering: cos �2�0

We shall only study one of the two cases where the scat-
tered wave is directed to the south-east, as shown in Fig. 6.
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FIG. 7. Real �left� and imaginary �right� parts of the eigenvalues �1 �solid curve� and �2 �dashed curve� for the forward-scattering case
in Fig. 6. �a� �a=0.0 �no dissipation�, �b� �a=0.1�1+ i�, �c� �a=0.5�1+ i�, and �d� �a=2.0�1+ i�. Different scales are used for the imaginary
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The boundary conditions are

B1
− = B1, X = 0 and B + = B+, B2 = B2

+, X = L .

�6.12�

For these ��1 ,�2�, the real and imaginary parts of the two
eigenvalues �1 and �2 are displayed in Fig. 7 for different
values of the dissipation parameter �a and for a range of the
detuning parameter �

�0
. In the absence of viscosity, both ei-

genvalues are real �see Fig. 7�a��, but complex otherwise.
The imaginary part is larger for greater viscosity.

The amplitudes in the open water on the incidence side
are

B1
−�X� = eiK cos �1X, B2

−�X� = 0; X � 0. �6.13�

Imposing the two matching conditions at X=0—B1�0�=1
and B2�0�=0—we find

B1�X� =
M11 − �2

�1 − �2
exp	 i�1�0X

Cg

 −

M11 − �1

�1 − �2
exp	 i�2�0X

Cg

 ,

�6.14a�

B2�X� =
�M11 − �1��M11 − �2�

M12��1 − �2�

��− exp	 i�1�0X

Cg

 + exp	 i�2�0X

Cg

� .

�6.14b�

These are formally the same as Eqs. �72�, �73a� and �73b� in
�2� with the new �i and Mij given above.

The wave intensities �B1�X��2 and �B2�X��2 across the array
are shown in Fig. 8 for �0L /Cg=8. As the detuning param-
eter � /�0 increases, the scattered wave becomes weaker.
Spatial oscillations of both �B1�X��2 and �B2�X��2 become
more intense as detuning increases, but disappear as �a in-
creases. Without dissipation one finds, at certain Xn /L,
B1�Xn�=1 and B2�Xn�=0. Therefore transmission is perfect if
the array width is exactly Xn. On the other hand, at certain
other Xm /L, B1�Xm�=0, while B2�Xm�=1; only the scattered
wave is seen at the exit if the array width is exactly Xm. Now
on the transmission side only the scattered wave emerges,
which can be viewed as a transmitted wave inclined at the
angle �2=−� /3. In this particular case the array behaves not
like a piece of transparent glass, but like a mirror transverse
to the array and reflects the incident waves. With increasing
viscosity, this occurrence is weakened.

To examine the effect of detuning on the waves at the exit
edge, we fix the array width L. The dependence of �B1�L��2
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FIG. 8. The transmitted wave intensity �B1�X��2 �left� and the scattered wave intensity �B2�X��2 �right� over the cylinder array of very large

width
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=8 for different detuning parameters �
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=0 �solid curve�, 1 �dashed curve�, and 5 �dash-dotted curve�: �a� �a=0.0 �no dissipation�,
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and �B2�L��2 on the detuning frequency �

�0
is plotted for two

array widths �0L /Cg=2 and 4 in Fig. 9. Without dissipation,
transmission is small, but scattering is strong in the inviscid
band gap centered around �=0. With dissipation, the band
gap disappears. For small �a=0.1�1+i�, transmission and
scattering are both weakened. With larger dissipation, the
two forward waves become equally small and significant
only near �=0.

C. Backward scattering: cos �2�0

As another example, we consider a square lattice of spac-
ing a1 and choose the incident wave vector k1 such that the
scattered wave vector k2 is as shown in Fig. 10—i.e., �1
=� /6—so that �2=5� /6. The incident wave number is k
=2� /�3a1. Now the boundary conditions at the edges of the
cylinder array are

B1�0� = 1, B2�L� = 0. �6.15�

The solutions are formally the same as Eqs. �98�–�100� in
�2�.

For these angles ��1 ,�2�, the real and imaginary parts of
the complex �1 and �2 are shown for a range of detuning
� /�0 and different values of �a in Fig. 11. Understandably,
the qualitative features are similar to the one-dimensional
case of normal incidence and reflection. Without viscosity

�a=0.0, there is a band gap. With finite dissipation, both
eigenvalues are complex for all � /�0. The band gap disap-
pears.

Figure 12 shows the spatial variation of the transmission
intensity �B1�X��2 and the reflection intensity �B2�X��2 across
the strip for various detunings �

�0
=0.5,2 ,−3. When �a

=0.0, the wave intensities are oscillatory in X for � /�0=
−3 and 2 which are outside the band gap, and attenuate
monotonically for � /�0=0.5, which is inside the band gap.
Understandably, the solutions are qualitatively similar to the
one-dimensional case of simple reflection. When �a�0.0,
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dissipation damps out the oscillations outside the band gap
and makes them disappear as �a becomes larger. Within the
band gap, wave intensities attenuate monotonically, but
faster as �a increases.

Figure 13 shows the dependence of transmission intensity
at the exit edge X=L �left� and the reflection intensity at the

entry edge X=0 �right� on the detuning �

�0
for different array

widths:
�0L

Cg
=1,2 ,8. Without viscosity, weak tramsmission

and strong backscattering prevail inside a clear band gap.
With increasing viscosity the band gap shrinks to the imme-
diate neighborhood of � /�0=−2. The transmission intensity
diminishes more rapidly than reflection.

VII. CONCLUDING REMARKS

We have examined the effects of viscosity on the propa-
gation of small-amplitude water waves through a periodic
array of vertical cylinders. Under the assumptions likely re-
alistic for future offshore airports—i.e., small cylinders and
large spacing—we have considered the phenomenon of
Bragg resonance. The asymptotic approach of �1,2� is fol-
lowed. Boundary layer effects due to viscosity are repre-
sented in terms of the velocity potential by using a fictitious
boundary condition on the cylinders. The effective coeffi-
cient is chosen so as to give the correct dynamical effect on
the cylinders. The model should be directly applicable to
laboratory tests where molecular viscosity is relevant. In the
field the boundary layer is likely turbulent so that a much
larger �empirical� value of eddy viscosity must be used in-
stead. We also reason in the Appendix that vortex shedding is
important only for large-amplitde waves. Since the math-
ematical problem treated here is similar to two-dimensional
scattering of sound by a periodic array of parallel wires, the
present theory may be modified to examine the effects of
dissipation on multiple scattering including band gaps, etc.
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FIG. 11. Dependence of real �solid curve� and imaginary
�dashed curve� parts of the eigenvalues �1 and �2 on detuning fre-
quency �

�0
for the backward-scattered waves shown in Fig. 10: �a�

�a=0.0 �no dissipation�, �b� �a=0.1�1+i�, �c� �a=0.5�1+i�, and
�d� �a=2.0�1+i�.
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FIG. 12. Transmission intensity �B1�X��2 �left� and the reflection intensity �B2�X��2 �right� across the strip for various detuning frequencies
� /�0=0.5 �solid curve�, 2 �dashed curve�, and −3 �dash-dotted curve� for the scattering configuration in Fig. 10. The dimensionless strip
length is �0L /Cg=2. �a� �a=0.0 �no dissipation�, �b� �a=0.1�1+i�, �c� �a=0.5�1+i�, and �d� �a=2.0�1+i�.
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APPENDIX: REMARKS ON VORTEX SHEDDING

As is well known, flow around a smooth vertical circular
cylinder in waves is characterized by the Reynolds number
�Re=U0D /�� and the Keulegan-Carpenter number �KC
=U0T /D, where U0 is the horizontal fluid velocity at the
center of the cylinder in the absence of the cylinder, T the
wave period, D the cylinder diameter, and � kinematic vis-
cosity �see, for example, �10,11����.

To examine the role of shedding vortices in gentle waves
considered here, we focus attention on the free surface �z
=0� where the horizontal fluid velocity attains its maximum
value.

In view of �2.5� and �2.7�, the order of magnitude of the
horizontal velocity at the free surface can be estimated by

�U�x,y,z = 0,t�� = ��
Z�0�� =
g

	
�Re � 
� = �

g

	
, �A1�

where �=O��
� is the measure of local wave steepness.
Making use of �2.8� and �=ka, the maximum of Reynolds
and Keulegan-Carpenter numbers at the free surface are

Remax =
U��z = 0��maxD

�
=

2a

�

g

	
� , �A2a�

�KC�max =
U��z = 0��maxT

D
= �

g

a	2� =
�

�

�

tanh kH
.

�A2b�

The linearized asymptotic theory in �1,2� is valid if the
wave steepness is small enough such that

� � O��2 = k2a2� �A3�

�see �1��. Within the realm of the linearized theory, we have
the following:

Remax �
2a

�

g

	
O��2�, �KC�max �

�

tanh kH
O��� ,

�A4�

in view of �A2� and �A3�. Note that the maximum of
Keulegan-Carpenter number is O���.

Now let us estimate Remax and KCmax
in reality. In the field,

the typical values are a�1–5 m, ka�0.1, and kH=1, which
for �=10−6 m2 /s leads to the following:

Remax � �0.23 – 2.5� � 106, �KC�max � 0.41. �A5�

−6 −4 −2 0 2 4 6
0

0.5

1

−6 −4 −2 0 2 4 6
0

0.5

1

−6 −4 −2 0 2 4 6
0

0.5

1

−6 −4 −2 0 2 4 6
0

0.5

1

−6 −4 −2 0 2 4 6
0

0.5

1|B
1(L

)|2

−6 −4 −2 0 2 4 6
0

0.5

1|B
2(0

)|2

−6 −4 −2 0 2 4 6
0

0.5

1

Ω/Ω
0

−6 −4 −2 0 2 4 6
0

0.5

1

Ω/Ω
0

(a)

(b)

(c)

(d)

FIG. 13. Transmission intensity �B1�L��2 at the exit edge of array �left� and reflection intensity �B2�0��2 at the incident edge of array �right�
for various detuning � /�0 and array widths. Dashed curve: �0L /Cg=1. Dash-dot curve: �0L /Cg=2. Solid curve: �0L /Cg=8. �a� �a
=0.0 �no dissipation�, �b� �a=0.1�1+i�, �c� �a=0.5�1+i�, and �d� �a=2.0�1+i�.
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In laboratory experiments, on the other hand, we take a
�5–25 cm, ka�0.1, and kH=1 so that

Remax � �0.25 – 2.8� � 104, �KC�max � 0.41. �A6�

According to typical field data �see, e.g., Fig. 3.16� of �11�,
for Reynolds numbers in the above range for the field,
�0.23–2.5��106, the Keulegan-Carpenter number has to be
greater than about 5.4 for vortex shedding to occur. From

laboratory tests �see Fig. 3.15 of �11��, for Reynolds number
in the range �0.25–2.8��104, the Keulegan-Carpenter num-
ber has to be above 7 to trigger vortex shedding. Both values
of the Keulegan-Carpenter number are higher than the esti-
mated values in �A5� and �A6�. Hence, within the bounds of
linearized theory, vortex shedding is ineffective. For very
strong waves, nonlinearity and vortex shedding can of course
be important and even overwhelm Bragg scattering. A very
different theory is then needed.
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